Chrome Extension
WeChat Mini Program
Use on ChatGLM

MXene-derived composite catalyst with micro-holes by a solvothermal method with tiny amount of solvent for high-efficiency catalytic hydrogen production

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY(2024)

Cited 0|Views8
No score
Abstract
A strategy is reported here to introduce micro-holes in the two-dimensional layered Ti3C2 by the tiny-solve-thermal method. TiO2 grows situ either in holes and between or on layers of Ti3C2 using this method meanwhile. The special micro-holes morphology on Ti3C2 enhances the specific surface area and increases the channels for oxygen, enabling full oxidation between layers and generating more TiO2 and more in-situ generated Ti3C2-TiO2 interfaces, which is conducive to TiO2 distribution and uniformity and provides more active sites. This hydrothermal method using tiny solvents can also produce porous morphology in other MXene materials (such as NbC), and photocatalysts with the special morphology will have a broader application prospect. Moreover, a fine interface connection between Ti3C2 and the in-situ grown TiO2 and the lower work function of Ti3C2 achieve an efficient electron-hole transfer. The hydrogen production performance of the Ti3C2-TiO2 photocatalyst prepared by this simple hydrothermal method has been greatly improved, which is up to 7.28 mmol/h/g with 3 wt% Pt and is 109 times and 7 times the Ti3C2-TiO2 catalyst with no holes and P25, respectively. (c) 2023 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
More
Translated text
Key words
TiO2,Solvothermal method,Photocatalytic H 2 evolution,NbC,Micro-hole
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined