An insight on the experimental volumetric behaviour of gassy soils

E3S web of conferences(2023)

Cited 0|Views0
No score
Abstract
Induced Partial Saturation (IPS) is one of the most innovative and promising countermeasures to mitigate soil liquefaction risk. Mechanical benefits of air/gas bubbles occluded within the pore water have been studied in the last decade through undrained cyclic tests on quasi -saturated (gassy) soils, demonstrating that the increased pore fluid compressibility prevents liquefaction triggering. The greater compressibility of the air bubbles rules the volumetric strains of gassy soils during seismic shaking reducing the build up of the pore water pressure. Mele et al., (2022) verified that, at the laboratory scale, due to lower frequencies of the applied cyclic loads, a non-negligible amount of soil volumetric strains is due to dissolution of air bubbles in the water (ε v,diss ). The outcomes of some simple compression tests carried out on a two-phase medium made of air/water confirm that such amount cannot be correctly computed with the Henry’s law, which considers the dissolution process of air into water in the hypothesis of continuous air phase. Experimental evidences highlighted that ε v,diss is mainly ruled by the continuity of air phase (linked to the chosen experimental procedure), and it exceeds the theoretical previsions when air phase is discontinuous with single bubbles occluded in the fluid phase.
More
Translated text
Key words
gassy soils,experimental volumetric behaviour
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined