Nano t-Se Peninsulas Embedded in Natively Oxidized 2D TiSe2 Enable Uniform and Fast Memristive Switching

Changying Xiong,Zhe Yang, Jiahao Shen, Feiyü Tang, Qingping He,Yi Li,Ming Xu,Yuhui He

ACS Applied Materials & Interfaces(2023)

引用 0|浏览1
暂无评分
摘要
Memristive devices, regardless of their potential applications in memory and computing scenarios, still suffer from large cycle-to-cycle and device-to-device variations due to the stochastic growth of conductive filaments (CFs). In this work, we fabricated a crossbar memristor using the 2D TiSe2 material and then oxidized it into TiO2 in the atmosphere at a moderate temperature. Such a mild oxidation approach fails to evaporate all Se into the air, and after further annealing using thermal or electrical stimulations, the remnant Se atoms gather near the interfaces and grow into nanosized crystals with relatively high conductivity. The resulting peninsula-shaped nanocrystals distort the electric field, forcing CFs to grow on them, which could largely confine the location and length of CFs. As a result, this two-terminal TiSe2/TiO2/TiSe2 device exhibits excellent resistive switching performance with a fairly low threshold voltage (Vset < 0.8 V, Vreset > 0.55 V) and high cycle-to-cycle consistency, enabling resistive switching at narrow operating variations, e.g., 500 ± 48 and 845 ± 39 mV. Our work offers a new approach to minimize the cycle-to-cycle stochasticity of the memristive device, paving the way for its applications in data storage and brain-inspired computing.
更多
查看译文
关键词
nano,2d tise<sub>2</sub>
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要