Effects of mesenchymal stem cells on the physical and mechanical properties of polyester scaffolds of different architectonics

Перспективные материалы(2023)

引用 0|浏览0
暂无评分
摘要
The biocompatibility of polylactic-co-glycolic acid (PLGA) scaffolds for tissue engineering constructions can be significantly improved by autologous mesenchymal stem cells (MSCs) colonization. However, the features of the cell colonization procedure can generally affect the changes in the physical and mechanical properties of these scaffolds, which are mostly determined by their architectonics. To study this issue, in this work, we have formed and investigated three types of experimental PLGA samples: 1). molded monolithic blocks; 2). porous scaffolds formed by plasticization in supercritical CO2 followed by foaming; and 3). electrospun fibrous non-woven scaffolds. The quantitative XTT test showed the nontoxicity of all studied samples, as well as the greater efficiency of the dynamic cell colonization method compared to the static one. After 48 hours of samples incubation with cell cultures, their physical and mechanical properties were noted to change both at macro- and microlevels. These changes, in our opinion, occur due to the processes of hydrolytic and enzymatic PLGA hydrolysis, as well as the effect of adhered MSCs on the scaffold internal structure and surface morphology. Similar transformations of certain physical, mechanical and structural properties of scaffolds based on other biodegradable polymers or their compositions can also occur as a result of their colonization with various cell cultures, which should be taken into account when applying the scaffolds to develop tissue engineering constructions.
更多
查看译文
关键词
polyester scaffolds,mesenchymal stem cells,stem cells,mechanical properties
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要