Functional effects of haemoglobin can be rescued by haptoglobin in anin vitromodel of subarachnoid haemorrhage

bioRxiv (Cold Spring Harbor Laboratory)(2023)

引用 0|浏览1
暂无评分
摘要
Abstract During subarachnoid haemorrhage, a blood clot forms in the subarachnoid space releasing extracellular haemoglobin (Hb), which causes oxidative damage and cell death in surrounding tissues. High rates of disability and cognitive decline in SAH survivors is attributed to loss of neurons and functional connections during secondary brain injury. Haptoglobin sequesters Hb for clearance, but this scavenging system is overwhelmed after a haemorrhage. Whilst exogenous haptoglobin application can attenuate cytotoxicity of Hb and in vivo , and in vivo the functional effects of sub-lethal Hb concentrations on surviving neurons and whether cellular function can be protected with haptoglobin treatment remain unclear. Here we use cultured neurons to investigate neuronal health and function across a range of Hb concentrations to establish the thresholds for cellular damage and investigate synaptic function. Hb impairs ATP concentrations and cytoskeletal structure. At clinically relevant but sublethal Hb concentrations, synaptic AMPAR-driven currents are reduced, accompanied by a reduction in GluA1 subunit expression. Haptoglobin co-application can prevent these deficits by scavenging free Hb to reduce it to sub-threshold concentrations and does not need to be present at stoichiometric amounts to achieve efficacy. Haptoglobin itself does not impair measures of neuronal health and function at any concentration tested. Our data highlight a role for Hb in modifying synaptic function after SAH, which may link to impaired cognition or plasticity, and support the development of haptoglobin as a therapy for subarachnoid haemorrhage.
更多
查看译文
关键词
haptoglobin,haemoglobin
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要