Mycobacterium tuberculosisresides in lysosome-poor monocyte-derived lung cells during persistent infection

bioRxiv (Cold Spring Harbor Laboratory)(2023)

引用 0|浏览7
暂无评分
摘要
Mycobacterium tuberculosis (Mtb) infects cells in multiple lung myeloid cell subsets and causes chronic infection despite innate and adaptive immune responses. However, the mechanisms allowing Mtb to evade elimination are not fully understood. Here, using new methods, we determined that after T cell responses have developed, CD11clo monocyte-derived lung cells termed MNC1 (mononuclear cell subset 1), harbor more live Mtb compared to alveolar macrophages (AM), neutrophils, and less permissive CD11chi MNC2. Bulk RNA sequencing of sorted cells revealed that the lysosome biogenesis pathway is underexpressed in MNC1. Functional assays confirmed that Mtb-permissive MNC1 have less lysosome content, acidification, and proteolytic activity than AM, and less nuclear TFEB, a master regulator of lysosome biogenesis. Mtb infection does not drive lysosome deficiency in MNC1 in vivo. Instead, Mtb recruits MNC1 and MNC2 to the lungs for its spread from AM to these cell subsets as a virulence mechanism that requires the Mtb ESX-1 secretion system. The c-Abl tyrosine kinase inhibitor nilotinib activates TFEB and enhances lysosome function of primary macrophages in vitro and MNC1 and MNC2 in vivo, improving control of Mtb infection. Our results indicate that Mtb exploits lysosome-poor monocyte-derived cells for in vivo persistence, suggesting a potential target for host-directed tuberculosis therapy.
更多
查看译文
关键词
tuberculosis</i>resides,lung cells,lysosome-poor,monocyte-derived
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要