Improved Performance of HfxZnyO‐Based RRAM and its Switching Characteristics down to 4 K Temperature

Advanced electronic materials(2023)

引用 3|浏览8
暂无评分
摘要
Abstract The search for high‐performance resistive random‐access memory (RRAM) devices is essential to pave the way for highly efficient non‐Von Neumann computing architecture. Here, it is reported on an alloying approach using atomic layer deposition for a Zn‐doped HfO x ‐based resistive random‐access memory (HfZnO RRAM), with improved performance. As compared with HfO x RRAM, the HfZnO RRAM exhibits reduced switching voltages (>20%) and switching energy (>3×), as well as better uniformity both in voltages and resistance states. Furthermore, the HfZnO RRAM exhibits stable retention exceeding 10 years, as well as write/erase endurance exceeding 10 5 cycles. In addition, excellent linearity and repeatability of conductance tuning can be achieved using the constant voltage pulse scheme, achieving ≈90% accuracy in a simulated multi‐layer perceptron network for the recognition of modified national institute of standards and technology database handwriting. The HfZnO RRAM is also characterized down to the temperature of 4 K, showing functionality and the elucidation of its carrier conduction mechanism. Hence, a potential pathway for doped‐RRAM to be used in a wide range of temperatures including quantum computing and deep‐space exploration is shown.
更多
查看译文
关键词
rram,switching characteristics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要