Reductive Elimination Reactions in Gold(III) Complexes Leading to C(sp3)–X (X = C, N, P, O, Halogen) Bond Formation: Inner-Sphere vs SN2 Pathways

Inorganic Chemistry(2023)

引用 3|浏览2
暂无评分
摘要
The reactions leading to the formation of C–heteroatom bonds in the coordination sphere of Au(III) complexes are uncommon, and their mechanisms are not well known. This work reports on the synthesis and reductive elimination reactions of a series of Au(III) methyl complexes containing different Au–heteroatom bonds. Complexes [Au(CF3)(Me)(X)(PR3)] (R = Ph, X = OTf, OClO3, ONO2, OC(O)CF3, F, Cl, Br; R = Cy, X = Me, OTf, Br) were obtained by the reaction of trans-[Au(CF3)(Me)2(PR3)] (R = Ph, Cy) with HX. The cationic complex cis-[Au(CF3)(Me)(PPh3)2]OTf was obtained by the reaction of [Au(CF3)(Me)(OTf)(PPh3)] with PPh3. Heating these complexes led to the reductive elimination of MeX (X = Me, Ph3P+, OTf, OClO3, ONO2, OC(O)CF3, F, Cl, Br). Mechanistic studies indicate that these reductive elimination reactions occur either through (a) the formation of tricoordinate intermediates by phosphine dissociation, followed by reductive elimination of MeX, or (b) the attack of weakly coordinating anionic (TfO– or ClO4–) or neutral nucleophiles (PPh3 or NEt3) to the Au-bound methyl carbon. The obtained results show for the first time that the nucleophilic substitution should be considered as a likely reductive elimination pathway in Au(III) alkyl complexes.
更多
查看译文
关键词
reductive elimination reactions,complexes,bond formation,inner-sphere
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要