Study of S, Cl and Ar isotopes with $N \geq Z$ using microscopic effective $sd$-shell interactions

arXiv (Cornell University)(2023)

引用 0|浏览0
暂无评分
摘要
In the present work, newly developed microscopic effective $sd$-valence shell interactions such as chiral next-to-next-to-next-to-leading order (N3LO), $J$-matrix inverse scattering potential (JISP16), Daejeon16 (DJ16), and monopole-modified DJ16 (DJ16A) are employed to study the nuclear structural properties of sulphur, chlorine, and argon isotopes with $N \geq Z$. These interactions are derived using the \textit{ab initio} no-core shell-model and the OLS unitary transformation method. We calculate energy spectra and electromagnetic properties to test the predictive strength of the effective interactions for these heavier $sd$-shell nuclei. For a complete systematic study, we compare the microscopic results with the phenomenological USDB results and experimental data. By looking at the excitation energies of these nuclei, the DJ16A interaction is found to be {the} most suitable for these $sd$-shell nuclei among all microscopic interactions. The electric quadrupole transition strength and excitation energy of the first $2^+$ state data of even-even sulphur isotopes indicate the presence of the $N=20$ shell closure. Quadrupole moment predictions are also made using these interactions where experimental data are unknown. Magnetic moments are in excellent agreement with the experimental values. The root-mean-square deviations are also calculated to provide an idea of how accurate the interactions are.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要