谷歌Chrome浏览器插件
订阅小程序
在清言上使用

A novel seal-flow multi-vortex friction stir lap welding of metal to polymer matrix composites

CHINESE JOURNAL OF AERONAUTICS(2024)

引用 0|浏览4
暂无评分
摘要
The friction stir lap welding (FSLW) of metal to polymer is a challenging work due to the unavoidable polymer overflowing. Facing this problem, a novel seal-flow multi-vortex friction stir lap welding (SM-FSLW) technology based on the subversively-designed multi-step pin was put forward. Choosing 7075 aluminum alloy and short glass fiber-reinforced polyether ether ketone (PEEK) as research subjects, the welding temperature, material flow, formation and tensile shear strength of dissimilar materials lap joint under the SM-FSLW were studied and compared with those under traditional FSLW based on the conical pin. The multi-step pin rather than the conical pin effectively hindered the polymer overflowing due to the formation of vortexes by the step, thereby attaining a joint with a smooth surface. Compared with traditional FSLW, the SMFSLW obtained the higher welding temperature, the more violent material flow and the larger area with high flow velocity, thereby producing the macro-mechanical and micro-mechanical interlockings and then heightening the joint loading capacity. The tensile shear strength of lap joint under SM-FSLW was 27.8% higher than that under traditional FSLW. The SM-FSLW technology using the multi-step pin provides an effective way on obtaining a heterogeneous lap joint of metal to polymer with the excellent formation and high strength. (c) 2023 Production and hosting by Elsevier Ltd. on behalf of Chinese Society of Aeronautics and Astronautics. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/4.0/).
更多
查看译文
关键词
Friction stir lap welding,Metal to polymer,Multi -step pin,Material flow,Tensile shear strength
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要