Tdcosmo

Astronomy and Astrophysics(2023)

引用 1|浏览0
暂无评分
摘要
We have measured the redshifts and single-aperture velocity dispersions of eight lens galaxies using the data collected by the Echellette Spectrograph and Imager (ESI) and Low Resolution Imaging Spectrometer (LRIS) at W.M. Keck observatory on different observing nights spread over three years (2018-2020). These results, combined with other ancillary data, such as high-resolution images of the lens systems, and time delays, are necessary to increase the sample size of the quasar-galaxy lens systems for which the Hubble constant can be measured, using the time-delay strong lensing method, hence increasing the precision of its inference. Typically, the 2D spectra of the quasar-galaxy lens systems get spatially blended due to seeing by ground-based observations. As a result, the extracted lensing galaxy (deflector) spectra become significantly contaminated by quasar light, which affects the ability to extract meaningful information about the deflector. To account for spatial blending and extract less contaminated and higher signal-to-noise ratio (S/N) 1D spectra of the deflectors, a forward modeling method has been implemented. From the extracted spectra, we have measured redshifts using prominent absorption lines and single aperture velocity dispersions using the penalized pixel fitting code pPXF. In this paper, we report the redshifts and single aperture velocity dispersions of eight lens galaxies - J0147+4630, B0445+123, B0631+519, J0659+1629, J0818-2613, J0924+0219, J1433+6007, and J1817+2729. Among these systems, six do not have previously measured velocity dispersions; for the other two, our measurements are consistent with previously reported values. Additionally, we have measured the previously unknown redshifts of the deflectors in J0818-2613 and J1817+2729 to be $0.866 \pm 0.002$ and $0.408 \pm 0.002$, respectively.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要