Chrome Extension
WeChat Mini Program
Use on ChatGLM

Honokiol attenuates high glucose‐induced peripheral neuropathy via inhibiting ferroptosis and activating AMPK/SIRT1/PGC‐1ɑ pathway in Schwann cells

Man Hu, Wanling Jiang, Hongzhi Wang,Ting Hu,Qingqing Yu, M S Meng, Li Sun, Jing Liang,Yong Chen

Phytotherapy Research(2023)

Cited 0|Views5
No score
Abstract
Schwann cells injury induced by high glucose (HG) contributes to the development of diabetic peripheral neuropathy (DPN). Honokiol has been reported to regulate glucose metabolism, however, its effect on DPN and the precise molecular mechanisms remain unclear. This study aimed to investigate the role of AMPK/SIRT1/PGC-1α axis in the protective effects of honokiol on DPN. The biochemical assay and JC-1 staining results demonstrated that honokiol reduced HG-induced oxidative stress and ferroptosis as well as mitochondrial dysfunction in Schwann cells. RT-qPCR and western blotting were utilized to investigate the mechanism of action of honokiol, and the results showed that HG-induced inhibition of AMPK/SIRT1/PGC-1α axis and changes of downstream gene expression profile were restored by honokiol. Moreover, silencing of Sirt1 by siRNA delivery markedly diminished the changes of gene expression profile induced by honokiol in HG-induced Schwann cells. More importantly, we found that administration of honokiol remarkably attenuated DPN via improving sciatic nerve conduction velocity and increasing thermal and mechanical sensitivity in streptozotocin-induced diabetic rats. Collectively, these results demonstrate that honokiol can attenuate HG-induced Schwann cells injury and peripheral nerve dysfunction, suggesting a novel potential strategy for treatment of DPN.
More
Translated text
Key words
schwann,glucose‐induced
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined