Diagnosis of multiple sclerosis using optical coherence tomography supported by explainable artificial intelligence

Research Square (Research Square)(2024)

引用 1|浏览2
暂无评分
摘要
Background/objectives Study of retinal structure based on optical coherence tomography (OCT) data can facilitate early diagnosis of relapsing-remitting multiple sclerosis (RRMS). Although artificial intelligence can provide highly reliable diagnoses, the results obtained must be explainable. Subjects/methods The study included 79 recently diagnosed RRMS patients and 69 age matched healthy control subjects. Thickness (Avg) and inter-eye difference (Diff) features are obtained in 4 retinal layers using the posterior pole protocol. Each layer is divided into six analysis zones. The Support Vector Machine plus Recursive Feature Elimination with Leave-One-Out Cross Validation (SVM-RFE-LOOCV) approach is used to find the subset of features that reduces dimensionality and optimises the performance of the classifier. Results SVM-RFE-LOOCV was used to identify OCT features with greatest capacity for early diagnosis, determining the area of the papillomacular bundle to be the most influential. A correlation was observed between loss of layer thickness and increase in functional disability. There was also greater functional deterioration in patients with greater asymmetry between left and right eyes. The classifier based on the top-ranked features obtained sensitivity = 0.86 and specificity = 0.90. Conclusions There was consistency between the features identified as relevant by the SVM-RFE-LOOCV approach and the retinotopic distribution of the retinal nerve fibres and the optic nerve head. This simple method contributes to implementation of an assisted diagnosis system and its accuracy exceeds that achieved with magnetic resonance imaging of the central nervous system, the current gold standard. This paper provides novel insights into RRMS affectation of the neuroretina.
更多
查看译文
关键词
optical coherence tomography,multiple sclerosis,diagnosis,artificial intelligence
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要