ALMA Fragmented Source Catalogue in Orion (FraSCO) I. Outflow interaction within an embedded cluster in OMC-2/FIR3, FIR4, and FIR5

arXiv (Cornell University)(2022)

引用 0|浏览3
暂无评分
摘要
We present a high angular resolution ($\sim1"$) and wide-field ($2'.9 \times 1'.9$) image of the 1.3-mm continuum, CO($J$ = 2--1) line, and SiO($J$ = 5--4) line emissions toward an embedded protocluster, FIR3, FIR4, and FIR5, in the Orion Molecular Cloud 2 obtained from the Atacama Large Millimeter/submillimeter Array (ALMA). We identify 51 continuum sources, 36 of which are newly identified in this study. Their dust masses, projected sizes, and $\mathrm{H_2}$ gas number densities are estimated to be $3.8 \times 10^{-5}$--$ 1.1 \times 10^{-2} \mathrm{M_{\odot}}$, 290--2000 au, and $6.4 \times 10^{6}$--$3.3 \times 10^{8}\,\mathrm{cm^{-3}}$, respectively. The results of a Jeans analysis show that $\sim80\,\%$ of the protostellar sources and $\sim15\,\%$ of the prestellar sources are gravitationally bound. We identify 12 molecular outflows traced in the CO($J$ = 2--1) emission, six of which are newly detected. We spatially resolve shocked gas structures traced by the SiO($J$ = 5--4) emission in this region for the first time. We identify shocked gas originating from outflows and other shocked regions. These results provide direct evidence of an interaction between a dust condensation, FIR4, and an energetic outflow driven by HOPS-370 located within FIR3. A comparison of the outflow dynamical timescales, fragmentation timescales, and protostellar ages shows that the previously proposed triggered star-formation scenario in FIR4 is not strongly supported. We also discuss the spatial distribution of filaments identified in our continuum image by comparing it with a previously identified hub-fiber system in the $\mathrm{N_2H^+}$ line.
更多
查看译文
关键词
orion,cluster,omc-2/fir3,fir5,fir4
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要