The slowly evolving genome of the xenacoelomorph wormXenoturbella bocki

bioRxiv (Cold Spring Harbor Laboratory)(2022)

引用 0|浏览1
暂无评分
摘要
Abstract The evolutionary origins of Bilateria remain enigmatic. One of the more enduring proposals highlights similarities between a cnidarian-like planula larva and simple acoel-like flatworms. This idea is based in part on the view of the Xenacoelomorpha as an outgroup to all other bilaterians which are themselves designated the Nephrozoa (protostomes and deuterostomes). Genome data can help to elucidate phylogenetic relationships and provide important comparative data. Here we assemble and analyse the genome of the simple, marine xenacoelomorph Xenoturbella bocki , a key species for our understanding of early bilaterian and deuterostome evolution. Our highly contiguous genome assembly of X. bocki has a size of ∼11 1 Mbp in 18 chromosome like scaffolds, with repeat content and intron, exon and intergenic space comparable to other bilaterian invertebrates. We find X. bocki to have a similar number of genes to other bilaterians and to have retained ancestral metazoan synteny. Key bilaterian signalling pathways are also largely complete and most bilaterian miRNAs are present. We conclude that X. bocki has a complex genome typical of bilaterians, in contrast to the apparent simplicity of its body plan. Overall, our data do not provide evidence supporting the idea that Xenacoelomorpha are a primitively simple outgroup to other bilaterians and gene presence/absence data support a relationship with Ambulacraria.
更多
查看译文
关键词
xenacoelomorph worm<i>xenoturbella,genome
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要