A Quick Displacement of the SARS-CoV-2 variant Delta with Omicron: Unprecedented Spike in COVID-19 Cases Associated with Fewer Admissions and Comparable Upper Respiratory Viral Loads

medRxiv (Cold Spring Harbor Laboratory)(2022)

引用 0|浏览2
暂无评分
摘要
Abstract Background The increase in SARS-CoV-2 infections in December 2021 in the United States was driven primarily by the Omicron variant which largely displaced the Delta over a three week span. Outcomes from infection with the Omicron remain uncertain. We evaluate whether clinical outcomes and viral loads differ between Delta and Omicron infections during the period when both variants were co-circulating. Methods Remnant clinical specimens from patients that tested positive for SARS-CoV-2 after standard of care testing between the last week of November and the end of December 2021were used for whole viral genome sequencing. Cycle threshold values (Ct) for viral RNA, the presence of infectious virus, and levels of respiratory IgG were measured, and clinical outcomes were obtained. Differences in each measure were compared between variants stratified by vaccination status. Results The Omicron variant displaced the Delta during the study period and constituted 95% of the circulating lineages by the end of December 2021. Patients with Omicron infections (N= 1121) were more likely to be vaccinated compared to patients with Delta (N = 910), but were less likely to be admitted, require ICU level care, or succumb to infection regardless of vaccination status. There was no significant difference in Ct values based on the lineage regardless of the vaccination status. Recovery of infectious virus in cell culture was reduced in boosted patients compared to fully vaccinated without a booster and unvaccinated when infected with the Delta lineage. However, in patients with Omicron infections, recovery of infectious virus was not affected by vaccination. Conclusions Omicron infections of vaccinated individuals are expected, yet admissions are less frequent. Admitted patients might develop severe disease comparable to Delta. Efforts for reducing the Omicron transmission are required as even though the admission risk is lower, the numbers of infections continue to be high. Research in context Evidence before this study The unprecedented increase in COVID-19 cases in the month of December 2021, associated with the displacement of the Delta variant with the Omicron, triggered a lot of concerns. An understanding of the disease severity associated with infections with Omicron is essential as well as the virological determinants that contributed to its widespread predominance. We searched PubMed for articles published up to January 23, 2022, using the search terms (“Omicron”) AND (“Disease severity”) as well as (“Omicron”) AND (“Viral load”) And/ or (“Cell culture”). Our search yielded 3 main studies that directly assessed the omicron’s clinical severity in South Africa, its infectious viral load compared to Delta, and the dynamics of viral RNA shedding. In South Africa, compared to Delta, Omicron infected patients showed a significant reduction in severe disease. In this study, Omicron and non-Omicron variants were characterized based on S gene target failure using the TaqPath COVID-19 PCR (Thermo Fisher Scientific). In the study from Switzerland that assessed the infectious viral load in Omicron versus Delta, the authors analyzed only 18 Omicron samples that were all from vaccinated individuals to show that compared to Delta, Omicron had equivalent infectious viral titers. The third study that assessed the Omicron viral dynamics showed that the peak viral RNA in Omicron infections is lower than Delta. No published studies assessed the clinical discrepancies of Omicron and Delta infected patients from the US, nor comprehensively assessed, by viral load and cell culture studies, the characteristics of both variants stratified by vaccination status. Added value of this study To the best of our knowledge, this is the only study to date to compare the clinical characteristics and outcomes after infection with the Omicron variant compared to Delta in the US using variants characterized by whole genome sequencing and a selective time frame when both variant co-circulated. It is also the first study to stratify the analysis based on the vaccination status and to compare fully vaccinated patients who didn’t receive a booster vaccination to patients who received a booster vaccination. In addition, we provide a unique viral RNA and infectious virus load analyses to compare Delta and Omicron samples from unvaccinated, fully vaccinated, and patients with booster vaccination. Implications of all the available evidence Omicron associated with a significant increase in infections in fully and booster vaccinated individuals but with less admissions and ICU level care. Admitted patients showed similar requirements for supplemental oxygen and ICU level care when compared to Delta admitted patients. Viral loads were similar in samples from Omicron and Delta infected patients regardless of the vaccination status. The recovery of infectious virus on cell culture was reduced in samples from patients infected with Delta who received a booster dose, but this was not the case with Omicron. The recovery of infectious virus was equivalent in Omicron infected unvaccinated, fully vaccinated, and samples from patients who received booster vaccination. Funding NIH/NIAID Center of Excellence in Influenza Research and Surveillance contract HHS N2772201400007C, Johns Hopkins University, Maryland department of health, Centers for Disease Control and Prevention contract 75D30121C11061.
更多
查看译文
关键词
variant delta,omicron,sars-cov
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要