Toward Enhanced Robustness in Unsupervised Graph Representation Learning: A Graph Information Bottleneck Perspective

arXiv (Cornell University)(2023)

引用 0|浏览0
暂无评分
摘要
Recent studies have revealed that GNNs are vulnerable to adversarial attacks. Most existing robust graph learning methods measure model robustness based on label information, rendering them infeasible when label information is not available. A straightforward direction is to employ the widely used Infomax technique from typical Unsupervised Graph Representation Learning (UGRL) to learn robust unsupervised representations. Nonetheless, directly transplanting the Infomax technique from typical UGRL to robust UGRL may involve a biased assumption. In light of the limitation of Infomax, we propose a novel unbiased robust UGRL method called Robust Graph Information Bottleneck (RGIB), which is grounded in the Information Bottleneck (IB) principle. Our RGIB attempts to learn robust node representations against adversarial perturbations by preserving the original information in the benign graph while eliminating the adversarial information in the adversarial graph. There are mainly two challenges to optimizing RGIB: 1) high complexity of adversarial attack to perturb node features and graph structure jointly in the training procedure; 2) mutual information estimation upon adversarially attacked graphs. To tackle these problems, we further propose an efficient adversarial training strategy with only feature perturbations and an effective mutual information estimator with the subgraph-level summary. Moreover, we theoretically establish a connection between our proposed RGIB and the robustness of downstream classifiers, revealing that RGIB can provide a lower bound on the adversarial risk of downstream classifiers. Extensive experiments over several benchmarks and downstream tasks demonstrate the effectiveness and superiority of our proposed method.
更多
查看译文
关键词
Adversarial Attacks,Robustness,Unsupervised Graph Representation Learning,Mutual Information,Information Bottleneck
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要