Evolution of short-range magnetic correlations in the ferromagnetic alloys Ni-V

arXiv (Cornell University)(2022)

引用 0|浏览2
暂无评分
摘要
We experimentally study how the magnetic correlations develop in a binary alloy close to the ferromagnetic quantum critical point with small-angle neutron scattering (SANS). Upon alloying the itinerant ferromagnet nickel with vanadium, the ferromagnetic order is continuously suppressed. The critical temperature Tc vanishes when vanadium concentrations reach the critical value of xc=0.116 indicating a quantum critical point separating the ferromagnetic and paramagnetic phases. Earlier magnetization and $\mu$SR data have indicated the presence of magnetic inhomogeneities in Ni(1-x)V(x) and, in particular, recognize the magnetic clusters close to xc, on the paramagnetic and on the ferromagnetic sides with nontrivial dynamical properties. We present the results of SANS study with full polarization analysis of polycrystalline Ni(1-x)V(x) samples with x=0.10 and x=0.11 with low critical temperatures Tc below 50 K. For both Ni-V samples close to xc we find isotropic magnetic short-range correlations in the nanometer-scale persisting at low temperatures. They are suppressed gradually in higher magnetic fields. In addition, signatures of long-range ordered magnetic domains are present below Tc. The fraction of these magnetic clusters embedded in the ferromagnetic ordered phase grows towards xc and agrees well with the cluster fraction estimate from the magnetization and $\mu$SR data. Our SANS studies provide new insights into the nature of the inhomogeneities in a ferromagnetic alloy close to a quantum critical point.
更多
查看译文
关键词
magnetic correlations,alloys,short-range
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要