Sustained replication of synthetic canine distemper virus defective genomes in vitro and in vivo

bioRxiv (Cold Spring Harbor Laboratory)(2021)

引用 1|浏览0
暂无评分
摘要
Defective interfering (DI) genomes restrict viral replication and induce type-I interferon. Since DI genomes have been proposed as vaccine adjuvants or therapeutic antiviral agents, it is important to understand their generation, delineate their mechanism of action, develop robust production capacities, assess their safety and in vivo longevity and determine their long-term effects. To address this, we generated a recombinant (r) canine distemper virus (CDV) from an entirely synthetic molecular clone designed using the genomic sequence from a clinical isolate obtained from a free-ranging raccoon with distemper. rCDV was serially passaged in vitro to identify DI genomes that naturally arise during rCDV replication. Defective genomes were identified by Sanger and next-generation sequencing techniques and predominant genomes were synthetically generated and cloned into T7-driven plasmids. Fully encapsidated DI particles (DIPs) were then generated using a rationally attenuated rCDV as a producer virus to drive DI genome replication. We demonstrate these DIPs interfere with rCDV replication in a dose-dependent manner in vitro . Finally, we show sustained replication of a fluorescent DIP in experimentally infected ferrets over a period of 14 days. Most importantly, DIPs were isolated from the lymphoid tissues which are a major site of CDV replication. Our established pipeline for detection, generation and assaying DIPs is transferable to highly pathogenic paramyxoviruses and will allow qualitative and quantitative assessment of the therapeutic effects of DIP administration on disease outcome. Importance Defective interfering (DI) genomes have long been considered inconvenient artifacts that suppressed viral replication in vitro . However, advances in sequencing technologies have led to DI genomes being identified in clinical samples, implicating them in disease progression and outcome. It has been suggested that DI genomes could be harnessed therapeutically. Negative strand RNA virus research has provided a rich pool of natural DI genomes over many years and they are probably the best understood in vitro . Here, we demonstrate identification, synthesis, production and experimental inoculation of novel CDV DI genomes in highly susceptible ferrets. These results provide important evidence that rationally designed and packaged DI genomes can survive the course of a wild-type virus infection.
更多
查看译文
关键词
synthetic canine distemper virus,defective genomes,vitro</i>,sustained replication
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要