ALMA chemical survey of disk-outflow sources in Taurus (ALMA-DOT) VI: Accretion shocks in the disk of DG Tau and HL Tau

arXiv (Cornell University)(2021)

Cited 0|Views1
No score
Abstract
Planet-forming disks are not isolated systems. Their interaction with the surrounding medium affects their mass budget and chemical content. In the context of the ALMA-DOT program, we obtained high-resolution maps of assorted lines from six disks that are still partly embedded in their natal envelope. In this work, we examine the SO and SO$_2$ emission that is detected from four sources: DG Tau, HL Tau, IRAS 04302+2247, and T Tau. The comparison with CO, HCO$^+$, and CS maps reveals that the SO and SO$_2$ emission originates at the intersection between extended streamers and the planet-forming disk. Two targets, DG Tau and HL Tau, offers clear cases of inflowing material inducing an accretion shock on the disk material. The measured rotational temperatures and radial velocities are consistent with this view. In contrast to younger Class 0 sources, these shocks are confined to the specific disk region impacted by the streamer. In HL Tau, the known accreting streamer induces a shock in the disk outskirt, and the released SO and SO$_2$ molecules spiral toward the star in a few hundreds years. These results suggest that shocks induced by late accreting material may be common in the disks of young star-forming regions with possible consequences on the chemical composition and mass content of the disk. They also highlight the importance of SO and SO$_2$ line observations to probe accretion shocks from a larger sample.
More
Translated text
Key words
alma chemical survey,accretion shocks,dg taurus,hl taurus,disk-outflow,alma-dot
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined