Bioaugmentation strategies based on bacterial and methanogenic cultures to relieve stress in anaerobic digestion of protein-rich substrates

Renewable Energy(2023)

Cited 0|Views22
No score
Abstract
Anaerobic co-digestion of protein-rich substrates is a prominent strategy for converting valuable feedstocks into methane, but it releases ammonia, which can inhibit methanogenesis. This study developed a cutting-edge combined culturomic and metagenomic approach to investigate the microbial composition of an ammonia-tolerant biogas plant. Newly-isolated microorganisms were used for bioaugmentation of stressed batch reactors fed with casein, maize silage and their combination. A co-culture enriched with proteolytic bacteria was isolated, selected and compared with the proteolytic collection strain Pseudomonas lundensis DSM6252. The co-culture and P. lundensis were combined with the ammonia-resistant archaeon Methanoculleus bourgensis MS2 to boost process stability. A microbial population pre-adapted to casein was also tested for evaluating the digestion of protein-rich feedstock. The promising results suggest combining proteolytic bacteria and M. bourgensis could exploit microbial co-cultures to improve anaerobic digestion stability and ensure stable productivity even under the harshest of ammonia conditions. ![Figure][1] Highlights ### Competing Interest Statement The authors have declared no competing interest. [1]: pending:yes
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined