Polaron Vibronic Progression Shapes the Optical Response of 2D Perovskites

ADVANCED SCIENCE(2024)

引用 0|浏览8
暂无评分
摘要
The optical response of 2D layered perovskites is composed of multiple equally-spaced spectral features, often interpreted as phonon replicas, separated by an energy Delta similar or equal to 12 - 40 meV, depending upon the compound. Here the authors show that the characteristic energy spacing, seen in both absorption and emission, is correlated with a substantial scattering response above similar or equal to 200 cm(-1 )(similar or equal to 25 meV) observed in resonant Raman. This peculiar high-frequency signal, which dominates both Stokes and anti-Stokes regions of the scattering spectra, possesses the characteristic spectral fingerprints of polarons. Notably, its spectral position is shifted away from the Rayleigh line, with a tail on the high energy side. The internal structure of the polaron consists of a series of equidistant signals separated by 25-32 cm(-1 )(3-4 meV), depending upon the compound, forming a polaron vibronic progression. The observed progression is characterized by a large Huang-Rhys factor (S > 6) for all of the 2D layered perovskites investigated here, indicative of a strong charge carrier - lattice coupling. The polaron binding energy spans a range similar or equal to 20-35 meV, which is corroborated by the temperature-dependent Raman scattering data. The investigation provides a complete understanding of the optical response of 2D layered perovskites via the direct observation of polaron vibronic progression. The understanding of polaronic effects in perovskites is essential, as it directly influences the suitability of these materials for future opto-electronic applications.
更多
查看译文
关键词
2D perovskites,excitons,polarons,Raman spectroscopy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要