DisDock: A Deep Learning Method for Metal Ion-Protein Redocking

biorxiv(2023)

引用 0|浏览3
暂无评分
摘要
The structures of metalloproteins are essential for comprehending their functions and interactions. The breakthrough of AlphaFold has made it possible to predict protein structures with experimental accuracy. However, the type of metal ion that a metalloprotein binds and the binding structure are still not readily available, even with the predicted protein structure. In this study, we present DisDock, a physics-driven deep learning method for predicting protein-metal docking. DisDock takes distogram of randomly initialized protein-ligand configuration as input and outputs the distogram of the predicted binding complex. It combines the U-net architecture with self-attention modules to enhance model performance. Taking inspiration from the physical principle that atoms in closer proximity display a stronger mutual attraction, this predictor capitalizes on geometric information to uncover latent characteristics indicative of atom interactions. To train our model, we employ a high-quality metalloprotein dataset sourced from the Mother of All Databases (MOAD). Experimental results demonstrate that our approach outperforms other existing methods in prediction accuracy for various types of metal ions. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要