Personalized Transfer Learning Framework for Remaining Useful Life Prediction Using Adaptive Deconstruction and Dynamic Weight Informer

AXIOMS(2023)

引用 0|浏览1
暂无评分
摘要
The precise remaining useful life (RUL) prediction of turbofan engines benefits maintenance decisions. The training data quantity and quality are crucial for effective prediction modeling and accuracy improvement. However, the performance degradation process of the same type of turbofan engine usually exhibits different trajectories because of engines' differences in degradation degrees, degradation rates, and initial health states. In addition, the initial part of the trajectory is a stationary health stage, which contains very little information on degradation and is not helpful for modeling. Considering the differential degradation characteristics and the requirement for accurate prediction modeling of the same type of turbofan engines with individual differences, we specifically propose a personalized transfer learning framework for RUL prediction by answering three key questions: when, what, and how to transfer in prediction modeling. The framework tries to maximumly utilize multi-source-domain data (samples of the same type of engines that run to failure) to improve the training data quantity and quality. Firstly, a transfer time identification method based on a dual-baseline performance assessment and the Wasserstein distance is designed to eliminate the worthless part of a trajectory for transfer and prediction modeling. Then, the transferability of each sample in the multi-source domain is measured by an approach, named the time-lag ensemble distance measurement, and then the source domain is ranked and adaptively deconstructed into two parts according to transferability. Ultimately, a new training loss function considering the transferability of the weighted multi-source-domain data and a two-stage transfer learning scheme is introduced into an informer-based RUL prediction model, which has a great advantage for long-time-series prediction. The simulation data of 100 of the same type of turbofan engine with individual differences and five comparison experiments validate the effectiveness and accuracy of the proposed method.
更多
查看译文
关键词
turbofan engine, remaining useful life prediction, personalized transfer learning, multi-source-domain adaptive deconstruction
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要