Blockade of innate inflammatory cytokines TNF, IL-1, or IL-6 overcomes virotherapy-induced cancer equilibrium to promote tumor regression

IMMUNOTHERAPY ADVANCES(2023)

Cited 0|Views8
No score
Abstract
Cancer therapeutics can lead to immune equilibrium in which the immune response controls tumor cell expansion without fully eliminating the cancer. The factors involved in this equilibrium remain incompletely understood, especially those that would antagonize the anti-tumor immune response and lead to tumor outgrowth. We previously demonstrated that continuous treatment with a non-replicating herpes simplex virus 1 expressing interleukin (IL)-12 induces a state of cancer immune equilibrium highly dependent on interferon-gamma. We profiled the IL-12 virotherapy-induced immune equilibrium in murine melanoma, identifying blockade of innate inflammatory cytokines, tumor necrosis factor alpha (TNF alpha), IL-1 beta, or IL-6 as possible synergistic interventions. Antibody depletions of each of these cytokines enhanced survival in mice treated with IL-12 virotherapy and helped to overcome equilibrium in some tumors. Single-cell RNA-sequencing demonstrated that blockade of inflammatory cytokines resulted in downregulation of overlapping inflammatory pathways in macrophages, shifting immune equilibrium towards tumor clearance, and raising the possibility that TNF alpha blockade could synergize with existing cancer immunotherapies.
More
Translated text
Key words
equilibrium, cytokine blockade, macrophage, TNF, IL6, IL1B
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined