Numerical modeling of micro-particle migration in channels

ADVANCES IN GEO-ENERGY RESEARCH(2023)

引用 0|浏览2
暂无评分
摘要
Physicochemical forces exert non-neligible effects on the migration of micro-particles in channels. Experiments, analytical and non-resolved computational fluid dynamics models have failed to decipher the dynamic behaviors of these particles when carried by fluid flow. In this paper, particle-scale numerical simulation is conducted to study the adhesive micro-particle migration process during duct flow in channels with a large characteristic dimension ratio and those with relatively small such ratio based on the coupled lattice Boltzmann method-discrete element method. The interaction between particle and fluid flow is dealt with by the immersed moving boundary condition. For micro-particle migration in duct flow, the effects of hydrodynamic force, adhesive force and particle concentration on the aggregation of particles are investigated. Based on the concept of hydrodynamic and adhesive force ratio, a stable aggregation distribution map is proposed to help analyze the distribution and size of the formed agglomerates. For micro-particle migration in channels with small characteristic dimension ratio, the general particle migration process is analyzed, which includes single particle retention, followed by particle capture, and the migration of large agglomerates. It is concluded that two factors accelerate single particle retention in a curved channel. Moreover, it is established that higher fluid flow rate facilitates the formation of large and compact agglomerate, and blockage by this can cause severe damage to the conductivity of the channel.
更多
查看译文
关键词
Micro-particle migration,channel,particle agglomerate,lattice Boltzmann method,discrete element method,immersed moving boundary scheme
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要