Engineering band structuring via dual atom modification for an efficient photoanode

CHEMICAL SCIENCE(2024)

引用 0|浏览1
暂无评分
摘要
Efficient carrier separation is important for improving photoelectrochemical water splitting. Here, the morphology modification and band structure engineering of Ta3N5 are accomplished by doping it with Cu and Zr using a two-step method for the first time. The initially interstitially-doped Cu atoms act as anchors to interact with subsequently doped Zr atoms under the influence of differences in electronegativity. This interaction results in Cu,Zr-g-Ta3N5 having a dense morphology and higher crystallinity, which helps to reduce carrier recombination at grain boundaries. Furthermore, the gradient doping of Zr generates a band edge energy gradient, which significantly enhances bulk charge separation efficiency. Therefore, a photoanode based on Cu,Zr-g-Ta(3)N5 delivers an onset potential of 0.38 V-RHE and a photocurrent density of 8.9 mA cm(-2) at 1.23 V-RHE. Among all the Ta3N5-based photoanodes deposited on FTO, a Cu,Zr-g-Ta3N5-based photoanode has the lowest onset potential and highest photocurrent. The novel material morphology regulation and band edge position engineering strategies described herein provide new ideas for the preparation of other semiconductor nanoparticles to improve the photoelectrochemical water splitting performance.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要