Ni1-x Zn x Fe2O4@CoO (x=0.25 and 0.50) Nanoparticles for Magnetic Resonance Imaging

ACS APPLIED NANO MATERIALS(2023)

引用 0|浏览7
暂无评分
摘要
Nanomagnets with regulated magnetic properties are incredibly advantageous in the framework of magnetic resonance imaging (MRI) for medical imaging. This work aims to achieve an improved MRI-contrast signal by considering variation in octahedral site substitution of Zn2+ ions in nanoensembles of Ni1-x Znx Fe2O4@CoO (x = 0.25 and 0.50) nanoparticles. We observe enhanced MRI-contrast efficiency in nanoensembles of Ni0.75Zn0.25Fe2O4@CoO with superior ground state magnetization of 210.6 mu(B)/cell and a higher asymmetric coercive field than that of Ni0.5Zn0.5Fe2O4@CoO. In addition, both systems show cell viability to a normal HEK cell line until 0.5 mM and no pro-tumorigenic activity until 1 mM. The ratio of transverse to longitudinal relaxivity (r(2)/r(1)) gives a value of 30 for Ni0.75Zn0.25Fe2O4@CoO and 19.5 for Ni0.5Zn0.5Fe2O4@CoO, resulting in promising candidates for MRI-transverse contrast agents with a small metal concentration up to 0.375 mM. A superior MRI-contrast signal is achieved in Ni0.75Zn0.25Fe2O4@CoO. As a result, we successfully achieve enhancement in MRI-contrast efficiency by considering manipulation in octahedral site substitution in cell-viable nanoensembles of Ni1-x Znx Fe2O4@CoO (x = 0.25 and 0.50) and attaining the significant association of anisotropy field strength and easy axes alignment toward proton dephasing in the MRI-relaxivity mechanism.
更多
查看译文
关键词
nanoparticles,magnetic resonance,imaging
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要