A STAM Model Based on Spatiotemporal Airspace Sector Interdependencies to Minimize Tactical Flow Management Regulations

AEROSPACE(2023)

引用 0|浏览5
暂无评分
摘要
The lack of airspace capacity poses a significant challenge for a sustainable air transport system, particularly in scenarios of future growing demand. Air traffic management digitalization opens pathways for innovative and efficient solutions to tackle existing inefficiencies arising from spatially fragmented airspace. While research has focused on digitalized ATM services to improve airspace capacity, synergies among adjacent sectors to utilize latent capacity remain unexplored. Using a sector network model, in this study, we analyze spatiotemporal sector interdependencies, quantify time-stamp topological interdependencies, and evaluate capacity enhancement possibilities for sectors unable to meet dynamic demand. The occupancy count dynamic evolution and poor correlation among the over-loaded sectors with the occupancy count of its adjacent sectors provide opportunities for a short-term ATM mechanism, ensuring sector-level capacity invulnerability and enhancing airspace capacity at the network level. A computational experiment using real data from the European airspace is carried out to illustrate and validate this innovative solution.
更多
查看译文
关键词
spatiotemporal airspace sector interdependencies,tactical flow management regulations,stam model
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要