Unsteady flow modeling of low-velocity non-Darcian flow to a partially penetrating well in a leaky aquifer system

ADVANCES IN WATER RESOURCES(2024)

引用 0|浏览4
暂无评分
摘要
Previous studies on the flow dynamics of leaky aquifer systems have primarily relied on Darcy's law, assuming fully penetrating wells in confined aquifers. However, when dealing with aquitards dominated by clay, the flow behavior often deviates from Darcy's law. Moreover, in the majority of cases, this entails partially penetrating well pumping. This paper introduces a mathematical model for non-Darcian flow in a confined and partially penetrating well system within a leaky aquifer system. The model is based on the low-velocity non-Darcian flow equation, incorporating the threshold pressure gradient. In the confined aquifer, the flow exhibits twodimensional Darcian flow behavior, while in the aquitard, the flow is characterized by one-dimensional nonDarcian flow in the vertical direction. In the shallow aquifer, the flow is one-dimensional Darcian flow in the radial direction. The mathematical model is solved using the finite difference method, and the obtained results are compared with calculations based on traditional Darcian flow theory. The findings indicate that the confined groundwater head difference, as predicted by the Darcian and non-Darcian flow theories, diminishes radially as the distance from the pumping well increases and vertically as one moves away from the top of the confined aquifer. As pumping progresses, the confined groundwater head difference initially rises and subsequently stabilizes gradually. Moreover, the magnitude of the confined groundwater head difference is more pronounced when the threshold pressure gradient, vertical hydraulic conductivity of the aquitard, pumping rate, hydraulic conductivity and specific yield of shallow aquifer are larger, or when the hydraulic conductivity and specific storage of the confined aquifer are smaller. The effect of well screen length on the confined groundwater head difference is minimal.
更多
查看译文
关键词
Leaky aquifer system,Aquitard,Non-Darcian flow,Partially penetrating well,Finite difference method
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要