Multiple scenarios of climate anomalies over Europe in ensemble seasonal forecasts

Damien Specq, Shan Li,Lauriane Batté, Christian Viel, Frédéric Gayrard

crossref(2023)

引用 0|浏览1
暂无评分
摘要
Seasonal prediction uses ensemble forecasting to sample the distribution of possible climate outcomes in the upcoming term given the slowly-varying constraints on the atmosphere. However, translating the members’ distribution of a seasonal forecast into meaningful information is a challenge climate services are often faced with. When a large ensemble spread makes the forecast difficult to interpret, highlighting the competing signals from which the uncertainty arises may bear added value to end users. In order to do so, we present an approach to extract alternative seasonal forecast scenarios over Europe (in temperature, precipitation and atmospheric circulation) from ensemble seasonal forecasts. The aim of the scenarios is to refine the ensemble analysis beyond the usual forecast products (e.g ensemble mean, tercile probabilities), and to provide additional guidance for preparation of the seasonal forecast bulletins routinely issued at Météo-France. The seasonal forecast scenarios are determined with a hierarchical clustering of the ensemble members, based on their forecast temperature at 2-m (T2m). The dissimilarity between two members is defined from the spatial correlation between their respective maps of T2m anomalies – relative to model climatology – over a European domain (29.5°W-40.5°E; 30.5°N-70.5°N, land grid points only). The subsequent dissimilarity matrix across the ensemble feeds the clustering algorithm that groups members into clusters eventually defining the scenarios. The seasonal outcomes corresponding to these scenarios are then described through several diagnostics, e.g composites on sensible climate variables (T2m, precipitation), composites on atmospheric circulation variables (Z500, V200), and analysis through modes of variability and weather regimes. In addition, we provide a description of how scenarios diverge in the course of forecast integration and identify teleconnections related to each scenario. Finally, we also assess the skill of the seasonal forecasts assuming that only the subset of members representing the most likely scenario is retained. This methodology has been implemented to the Copernicus Climate Change Services (C3S) real-time seasonal forecasts across the past year for experimental purposes, and it is shown to be a relevant complement for the preparation of the Météo-France operational seasonal bulletins.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要