Protein-activated atomic layer deposition for robust crude-oil-repellent hierarchical nano-armored membranes

SCIENCE BULLETIN(2024)

引用 0|浏览10
暂无评分
摘要
Atomic layer deposition (ALD) offers unique capabilities to fabricate atomically engineered porous materials with precise pore tuning and multi-functionalization for diverse applications like advanced membrane separations towards sustainable energy-water systems. However, current ALD technique is inhibited on most non-polar polymeric membranes due to lack of accessible nucleation sites. Here, we report a facile method to efficiently promote ALD coating on hydrophobic surface of polymeric membranes via novel protein activation/sensitization. As a proof of concept, TiO2 ALD-coated membranes activated by bovine serum albumin exhibit remarkable superhydrophilicity, ultralow underwater crude oil adhesion, and robust tolerance to rigorous environments including acid, alkali, saline, and ethanol. Most importantly, excellent cyclable crude oil-in-water emulsion separation performance can be achieved. The mechanism for activation/sensitization is rooted in reactivity for a particular set of amino acids. Furthermore, the universality of protein-sensitized ALD is demonstrated using common egg white, promising numerous potential usages in biomedical engineering, environmental remediation, lowcarbon manufacturing, catalysis, and beyond. (c) 2023 Science China Press. Published by Elsevier B.V. and Science China Press. All rights reserved.
更多
查看译文
关键词
Membrane separation,Atomic layer deposition,Water treatment,Antifouling
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要