Synergistic mechanism of surface oxygen vacancies and metal sites on Al-substituted NiFe2O4 during peroxymonosulfate activation in the solid-water interface for 2,4-D degradation

Chemical Engineering Journal(2024)

引用 0|浏览19
暂无评分
摘要
In this study, Al-doped NiFe2O4 (NiAlxFe2-xO4) was synthesized by the isomorphic substitution strategy, which was further employed for peroxymonosulfate (PMS) activation to remove 2,4-dichlorophenoxyacetic acid (2,4-D) in water. Doping of Al could construct oxygen vacancies (OVs) in the structure of NiAlxFe2-xO4, which further facilitates the exposure of metal sites for PMS activation. The removal rate of 2,4-D increased greatly compared to the NiFe2O4-activated process. By the density functional theory (DFT) process, it was verified that Al was more likely to replace Fe rather than Ni. OVs sites have the lowest adsorption energy of H2O (Eads =-0.95 eV), and easily formed surface hydroxyl groups (-OH), which were further replaced by PMS (HSO5-). The formed surface complex Me-O-O-SO3- was readily activated via electron transfer between O-O bond, thus promoting the cleavage of it and inducing SO4 & sdot;-generation. This process induced the high performance of the NiAlxFe2-xO4/PMS system for effective 2,4-D degradation. Furthermore, the purified water showed relatively low toxicity. The present study proposed new insights into the interface mechanism of PMS triggering.
更多
查看译文
关键词
Al-substituted NiFe 2 O 4,Oxygen vacancy,PMS activation,Interface mechanism,DFT calculation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要