Engineering improved strategies for spinel cathodes in high-performing zinc-ion batteries

NANOSCALE(2024)

引用 0|浏览2
暂无评分
摘要
The development of high-performing cathode materials for aqueous zinc-ion batteries (ZIBs) is highly important for the future large-scale energy storage. Owing to the distinctive framework structure, diversity of valences, and high electrochemical activity, spinel materials have been widely investigated and used for aqueous ZIBs. However, the stubborn issues of low electrical conductivity and sluggish kinetics plague their smooth applications in aqueous ZIBs, which stimulates the development of effective strategies to address these issues. This review highlights the recent advances of spinel-based cathode materials that include the configuration of aqueous ZIBs and corresponding reaction mechanisms. Subsequently, the classifications of spinel materials and their properties are also discussed. Then, the review mainly summarizes the effective strategies for elevating their electrochemical performance, including their morphology and structure design, defect engineering, heteroatom doping, and coupling with a conductive support. In the final section, several sound prospects in this fervent field are also proposed for future research and applications. A review of the recent advances of spinel materials used for aqueous Zn-ion batteries, with special focus on engineering-improved strategies, is provided.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要