Mechanochemical Impregnation of a Redox-Active Guest into a Metal–Organic Framework for Electrochemical Capture of CO2

ACS Sustainable Chemistry & Engineering(2023)

引用 0|浏览1
暂无评分
摘要
Conventional adsorbents for CO2 capture typically utilize swings in temperature and/or pressure to adsorb and desorb CO2. These mechanisms can be energy-intensive, which has inspired further research on alternative capture mechanisms such as electro-swing CO2 capture. For this, metal–organic frameworks (MOFs) have been suggested as a potential adsorbent owing to their stability, ultrahigh surface areas, and ability to facilitate redox reactions. However, MOFs have not yet been utilized for the electrochemical capture of CO2. In this work, we demonstrate the facile synthesis of a redox-active MOF-based adsorbent for the electrochemical capture of CO2, and we employ spectroelectrochemistry to understand the adsorbent’s interaction with CO2. This represents an advancement toward the scalable production of electro-swing adsorbents and signals that MOFs can be successfully employed for this process.
更多
查看译文
关键词
electrochemical capture,metal–organic framework,mechanochemical impregnation,redox-active
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要