Brain and muscle activity during fatiguing maximum-speed knee movement

JOURNAL OF APPLIED PHYSIOLOGY(2024)

引用 0|浏览5
暂无评分
摘要
Although the underlying mechanisms behind upper limb (e.g., finger) motor slowing during movements performed at the maximum voluntary rate have been explored, the same cannot be said for the lower limb. This is especially relevant considering the lower limb's larger joints and different functional patterns. Despite the similar motor control base, previously found differences in movement patterns and segment inertia may lead to distinct central and peripheral manifestations of fatigue in larger joint movement. Therefore, we aimed to explore these manifestations in a fatiguing knee maximum movement rate task by measuring brain and muscle activity, as well as brain-muscle coupling using corticomuscular coherence, during this task. A significant decrease in knee movement rate up to half the task duration was observed. After an early peak, brain activity showed a generalized decrease during the first half of the task, followed by a plateau, whereas knee flexor muscle activity showed a continuous decline. A similar decline was also seen in corticomuscular coherence but for both flexor and extensor muscles. The electrophysiological manifestations associated with knee motor slowing therefore showed some common and some distinct aspects compared with smaller joint tasks. Both central and peripheral manifestations of fatigue were observed; the changes seen in both EEG and electromyographic (EMG) variables suggest that multiple mechanisms were involved in exercise regulation and fatigue development.
更多
查看译文
关键词
electroencephalography,electromyography,fatigue,motor control,movement rate
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要