Electrostatic-Driven Self-Assembly of Janus-like Monolayer-Protected Metal Nanoclusters

Anushna Bhattacharyya,Vikas Tiwari,Tarak Karmakar

JOURNAL OF PHYSICAL CHEMISTRY LETTERS(2024)

引用 0|浏览0
暂无评分
摘要
The generation of controlled microstructures of functionalized nanoparticles has been a crucial challenge in nanoscience and nanotechnology. Efforts have been made to tune ligand charge states that can affect the aggregation propensity and modulate the self-assembled structures. In this work, we modeled zwitterionic Janus-like monolayer ligand-protected metal nanoclusters (J-MPCs) and studied their self-assembly using atomistic molecular dynamics and on-the-fly probability-based enhanced sampling simulations. The oppositely charged ligand functionalization on two hemispheres of a J-MPC elicits asymmetric solvation, primarily driven by distinctive hydrogen bonding patterns in the ligand-solvent interactions. Electrostatic interactions between the oppositely charged residues in J-MPCs guide the formation of one-dimensional and ring-like self-assembled superstructures with molecular dipoles oriented in specific patterns. The pertinent atomistic insights into the intermolecular interactions governing the self-assembled structures of zwitterionic J-MPCs obtained from this work can be used to design a general strategy to create tunable microstructures of charged MPCs.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要