Accurate multi-population imputation of MICA, MICB, HLA-E, HLA-F and HLA-G alleles from genome SNP data

biorxiv(2023)

引用 0|浏览2
暂无评分
摘要
In addition to the classical HLA genes, the major histocompatibility complex (MHC) harbors a high number of other polymorphic genes with less established roles in disease associations and transplantation matching. To facilitate studies of the non-classical and non-HLA genes in large patient and biobank cohorts, we trained imputation models for MICA, MICB, HLA-E, HLA-F and HLA-G alleles on genome SNP array data. We show, using both population-specific and multi-population 1000 Genomes references, that the alleles of these genes can be accurately imputed for screening and research purposes. The best imputation model for MICA, MICB, HLA-E, -F and -G achieved a mean accuracy of 99.3% (min, max: 98.6, 99.9). Furthermore, validation of the 1000 Genomes exome short-read sequencing-based allele calling against a clinical-grade reference data showed an average accuracy of 99.8%, testifying for the quality of the 1000 Genomes data as an imputation reference. The imputation models, trained using the HIBAG algorithm, are available at GitHub (https://github.com/FRCBS/HLA\_EFG\_MICAB_imputation) and can be run locally, thus avoiding the need of sending sensitive genome data to remote portals. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要