Environmental Risk Assessment with Energy Budget Models: A Comparison Between Two Models of Different Complexity

Carlo Romoli,Tjalling Jager, Marie Trijau, Benoit Goussen, Andre Gergs

ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY(2024)

引用 0|浏览0
暂无评分
摘要
The extrapolation of effects from controlled standard laboratory tests to real environmental conditions is a major challenge facing ecological risk assessment (ERA) of chemicals. Toxicokinetic-toxicodynamic (TKTD) models, such as those based on dynamic energy budget (DEB) theory, can play an important role in filling this gap. Through the years, different practical TKTD models have been derived from DEB theory, ranging from the full "standard" DEB animal model to simplified "DEBtox" models. It is currently unclear what impact a different level of model complexity can have on the regulatory risk assessment. In the present study, we compare the performance of two DEB-TKTD models with different levels of complexity, focusing on model calibration on standard test data and on forward predictions for untested time-variable exposure profiles. The first model is based on the standard DEB model with primary parameters, whereas the second is a reduced version with compound parameters, based on DEBkiss. After harmonization of the modeling choices, we demonstrate that these two models can achieve very similar performances both in the calibration step and in the forward prediction step. With the data presented in the present study, selection of the most suitable TKTD model for ERA therefore cannot be based alone on goodness-of-fit or on the precision of model predictions (within current ERA procedures for pesticides) but would likely be based on the trade-off between ease of use and model flexibility. We also stress the importance of modeling choices, such as how to fill gaps in the information content of experimental toxicity data and how to accommodate differences in growth and reproduction between different data sets for the same chemical-species combination. Environ Toxicol Chem 2024;00:1-10. (c) 2023 ibacon GmbH. Bayer AG and The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
更多
查看译文
关键词
Environmental modeling,Pesticide risk assessment,Toxicokinetics,Toxicodynamics,Dynamic energy budget modeling
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要