Multi-functional analysis ofKlebsiella pneumoniaefimbrial types in adherence and biofilm formation

Virulence(2013)

Cited 26|Views0
No score
Abstract
Klebsiella pneumoniae is an opportunistic pathogen frequently associated with nosocomially acquired infections. Host cell adherence and biofilm formation of K. pneumoniae isolates is mediated by type 1 (T1P) and type 3 (MR/K) pili whose major fimbrial subunits are encoded by the fimA and mrkA genes, respectively. The E. coli common pilus (ECP) is an adhesive structure produced by all E. coli pathogroups and a homolog of the ecpABCDE operon is present in the K. pneumoniae genome. In this study, we aimed to determine the prevalence of these three fimbrial genes among a collection of 69 clinical and environmental K. pneumoniae strains and to establish a correlation with fimbrial production during cell adherence and biofilm formation. The PCR-based survey demonstrated that 96% of the K. pneumoniae strains contained ecpA and 94% of these strains produced ECP during adhesion to cultured epithelial cells. Eighty percent of the strains forming biofilms on glass produced ECP, suggesting that ECP is required, at least in vitro, for expression of these phenotypes. The fim operon was found in 100% of the strains and T1P was detected in 96% of these strains. While all the strains examined contained mrkA, only 57% of them produced MR/K fimbriae, alone or together with ECP. In summary, this study highlights the ability of K. pneumoniae strains to produce ECP, which may represent a new important adhesive structure of this organism. Further, it defines the multi-fimbrial nature of the interaction of this nosocomial pathogen with host epithelial cells and inert surfaces.
More
Translated text
Key words
biofilm formation,pneumoniae</i>fimbrial types,multi-functional
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined