谷歌Chrome浏览器插件
订阅小程序
在清言上使用

ERK3 is involved in regulating cardiac fibroblast function

PHYSIOLOGICAL REPORTS(2024)

引用 0|浏览14
暂无评分
摘要
ERK3/MAPK6 activates MAP kinase-activated protein kinase (MK)-5 in selected cell types. Male MK5 haplodeficient mice show reduced hypertrophy and attenuated increase in Col1a1 mRNA in response to increased cardiac afterload. In addition, MK5 deficiency impairs cardiac fibroblast function. This study determined the effect of reduced ERK3 on cardiac hypertrophy following transverse aortic constriction (TAC) and fibroblast biology in male mice. Three weeks post-surgery, ERK3, but not ERK4 or p38 alpha, co-immunoprecipitated with MK5 from both sham and TAC heart lysates. The increase in left ventricular mass and myocyte diameter was lower in TAC-ERK3(+/-) than TAC-ERK3(+/+) hearts, whereas ERK3 haploinsufficiency did not alter systolic or diastolic function. Furthermore, the TAC-induced increase in Col1a1 mRNA abundance was diminished in ERK3(+/-) hearts. ERK3 immunoreactivity was detected in atrial and ventricular fibroblasts but not myocytes. In both quiescent fibroblasts and "activated" myofibroblasts isolated from adult mouse heart, siRNA-mediated knockdown of ERK3 reduced the TGF-beta-induced increase in Col1a1 mRNA. In addition, intracellular type 1 collagen immunoreactivity was reduced following ERK3 depletion in quiescent fibroblasts but not myofibroblasts. Finally, knocking down ERK3 impaired motility in both atrial and ventricular myofibroblasts. These results suggest that ERK3 plays an important role in multiple aspects of cardiac fibroblast biology.
更多
查看译文
关键词
cardiac remodeling,ERK3,fibroblasts,hypertrophy,motility,TAC
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要