The use of a multicellular in vitro model to investigate uptake and migration of bacterial extracellular vesicles derived from the human gut commensal Bacteroides thetaiotaomicron.

Journal of extracellular biology(2023)

引用 1|浏览10
暂无评分
摘要
Bacterial extracellular vesicles (BEVs) are increasingly seen as key signalling mediators between the gut microbiota and the host. Recent studies have provided evidence of BEVs ability to transmigrate across cellular barriers to elicit responses in other tissues, such as the central nervous system (CNS). Here we use a combination of single-, two- and three-cell culture systems to demonstrate the transmigration of Bacteroides thetaiotaomicron derived BEVs (Bt-BEVs) across gut epithelium and blood brain barrier (BBB) endothelium, and their subsequent acquisition and downstream effects in neuronal cells. Bt-BEVs were shown to traffic to the CNS in vivo after intravenous administration to mice, and in multi-cell in vitro culture systems to transmigrate across gut epithelial and BBB endothelial cell barriers, where they were acquired by both microglia and immature neuronal cells. No significant activation/inflammatory effects were induced in non-differentiated neurons, in contrast to that observed in microglia cells, although this was notably less than that induced by lipopolysaccharide (LPS). Overall, our findings provide evidence for transmigration of Bt-BEVs across gut-epithelial and BBB endothelial cell barriers in vivo and in vitro, and their downstream responses in neural cells. This study sheds light onto how commensal bacteria-derived BEV transport across the gut-brain axis and can be exploited for the development of targeted drug delivery.
更多
查看译文
关键词
bacterial extracellular vesicles,gut
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要