Autocrine Endocannabinoid Signaling through CB1Receptors Potentiates OX1Orexin Receptor Signaling

Molecular Pharmacology(2012)

Cited 6|Views1
No score
Abstract
It has been proposed that OX(1) orexin receptors and CB(1) cannabinoid receptors can form heteromeric complexes, which affect the trafficking of OX(1) receptors and potentiate OX(1) receptor signaling to extracellular signal-regulated kinase (ERK). We have recently shown that OX(1) receptor activity releases high levels of the endocannabinoid 2-arachidonoyl glycerol (2-AG), suggesting an alternative route for OX(1)-CB(1) receptor interaction in signaling, for instance, in retrograde synaptic transmission. In the current study, we set out to investigate this possibility utilizing recombinant Chinese hamster ovary K1 cells. 2-AG released from OX(1) receptor-expressing cells acted as a potent paracrine messenger stimulating ERK activity in neighboring CB(1) receptor-expressing cells. When OX(1) and CB(1) receptors were expressed in the same cells, OX(1) stimulation-induced ERK phosphorylation and activity were strongly potentiated. The potentiation but not the OX(1) response as such was fully abolished by specific inhibition of CB(1) receptors or the enzyme responsible for 2-AG generation, diacylglycerol lipase (DAGL). Although the results do not exclude the previously proposed OX(1)-CB(1) heteromerization, they nevertheless unequivocally identify DAGL-dependent 2-AG generation as the pivotal determinant of the OX(1)-CB(1) synergism and thus suggest a functional rather than a molecular interaction of OX(1) and CB(1) receptors.
More
Translated text
Key words
autocrine endocannabinoid signaling,ox<sub>1</sub>orexin cb<sub>1</sub>receptors signaling,cb<sub>1</sub>receptors potentiates ox<sub>1</sub>orexin
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined