Chrome Extension
WeChat Mini Program
Use on ChatGLM

Comparative Analysis of Energy and CO2 Emission for the Integration of Biomass Gasification with a Dual-Reactor Chemical Looping Hydrogen Production Process

Energy & Fuels(2023)

Cited 0|Views1
No score
Abstract
Hydrogen is widely recognized as a promising solution for energy systems. However, the increasing demand for hydrogen necessitates the establishment of large-scale production methods. One prospective approach for sustainable green hydrogen production involves the integration of biomass gasification (BG) with chemical looping hydrogen production (CLHP). In this study, a novel BG–CLHP system is comprehensively simulated using the multi-stage Aspen Plus models, where the CLHP module employs a dual-reactor configuration and the oxygen carrier is controlled to circulate between FeO and Fe3O4. Eliminating the air reactor not only simplifies the structure of the system but also significantly enhances the safety and reliability of the hydrogen production process. The simulation results demonstrate that the BG–CLHP system exhibits efficiencies of 45.9, 66.6, and 92.8% for hydrogen production, total energy utilization, and carbon capture, respectively. Remarkably, the oxygen case is comparatively explored to achieve negative emission of CO2. With its exceptional energy utilization efficiency and efficient CO2 separation capability, the BG–CLHP system exhibits considerable potential for development compared to other hydrogen production pathways.
More
Translated text
Key words
biomass gasification,hydrogen,dual-reactor
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined