Notoginsenoside R2 reduces Aβ25-35-induced neuronal apoptosis and inflammation via miR-27a/SOX8/β-catenin axis

Human & Experimental Toxicology(2021)

Cited 0|Views0
No score
Abstract
Background: Alzheimer’s disease (AD) has affected numerous elderly individuals worldwide. Panax notoginseng has been shown to ameliorate AD symptoms, and notoginsenoside R2 is a key saponin identified in this plant. Purpose: In the current study, we aimed to explore whether notoginsenoside R2 could improve the prognosis of AD. Methods: Herein, primary rat cortical neurons were isolated and they were treated with amyloid beta-peptide (A β) 25–35 oligomers. Cellular apoptosis was examined via flow cytometry and Western blotting. miR-27a and SOX8 mRNA expression levels were quantified by quantitative reverse transcription-polymerase chain reaction. Furthermore, the interaction between miR-27a and SOX8 was investigated by utilizing a dual-luciferase reporter assay. Finally, an AD mouse model was established to validate the in vitro findings. Results: Notoginsenoside R2 alleviated A β25-35-triggered neuronal apoptosis and inflammation. During this process, miR-27a expression was decreased by notoginsenoside R2, and miR-27a negatively modulated SOX8 expression. Furthermore, activation of SOX8 upregulated β-catenin expression, thus suppressing apoptosis and neuroinflammation. Conclusions: Our animal experiments revealed that notoginsenoside R2 enhanced the cognitive function of AD mice and inhibited neuronal apoptosis. Notoginsenoside R2 ameliorated AD symptoms by reducing neuronal apoptosis and inflammation, thus suggesting a novel direction for AD pharmacotherapy.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined