Evidence for complex selection on four-fold degenerate sites inDrosophila melanogaster

Journal of Evolutionary Biology(2012)

引用 18|浏览0
暂无评分
摘要
We considered genome-wide four-fold degenerate sites from an African Drosophila melanogaster population and compared them to short introns. To include divergence and to polarize the data, we used its close relatives Drosophila simulans, Drosophila sechellia, Drosophila erecta and Drosophila yakuba as outgroups. In D. melanogaster, the GC content at four-fold degenerate sites is higher than in short introns; compared to its relatives, more AT than GC is fixed. The former has been explained by codon usage bias (CUB) favouring GC; the latter by decreased intensity of directional selection or by increased mutation bias towards AT. With a biallelic equilibrium model, evidence for directional selection comes mostly from the GC-rich ancestral base composition. Together with a slight mutation bias, it leads to an asymmetry of the unpolarized allele frequency spectrum, from which directional selection is inferred. Using a quasi-equilibrium model and polarized spectra, however, only purifying and no directional selection is detected. Furthermore, polarized spectra are proportional to those of the presumably unselected short introns. As we have no evidence for a decrease in effective population size, relaxed CUB must be due to a reduction in the selection coefficient. Going beyond the biallelic model and considering all four bases, signs of directional selection are stronger. In contrast to short introns, complementary bases show strand specificity and allele frequency spectra depend on mutation directions. Hence, the traditional biallelic model to describe the evolution of four-fold degenerate sites should be replaced by more complex models assuming only quasi-equilibrium and accounting for all four bases.
更多
查看译文
关键词
complex selection,in<i>drosophila melanogaster</i>,four-fold
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要