Electrospun polylactic acid nanofiber membranes containing Capparis spinosa L. extracts for potential wound dressing applications

Journal of Applied Polymer Science(2021)

Cited 3|Views4
No score
Abstract
Abstract Capparis spinosa L. (CSL) is a medicinal plant with high antibacterial activity against a variety of pathogens and antioxidation properties. In this paper, for the first time, nanofiber membranes of polylactic acid (PLA) containing 0, 4, 7,and 10 wt% CSL ethyl acetate extract were fabricated by electrospinning. Scanning electron microscopy showed that the fiber diameter decreased after adding CSL to the PLA nanofibers. Fourier transform infrared spectroscopy confirmed that CSL was successfully incorporated in the matrix. The water contact angle test proved that the addition of CSL improved the hydrophilic properties of the material. Moreover, the addition of CSL improved the oxidation resistance of the composite fiber membrane. A burst drug release from the composite nanofibers occurred within the first 12 hr, followed by slow release over a prolonged period of time. As the concentration of CSL increased, the inhibition ability of nanofibers against Escherichia coli ( E. coli ) and Staphylococcus aureus ( S. aureus ) gradually increased. In summary, due to their good mechanical, antioxidant, and antibacterial properties, CSL/PLA nanofiber membranes may possess potential applications as wound dressing materials.
More
Translated text
Key words
extracts
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined