谷歌浏览器插件
订阅小程序
在清言上使用

Constitutive Overexpression of RAM1 Leads to an Increase in Arbuscule Density in Brachypodium distachyon

Plant Physiology(2020)

引用 2|浏览3
暂无评分
摘要
Arbuscular mycorrhizal (AM) symbiosis is a mutually beneficial association of plants and fungi of the subphylum Glomeromycotina. Endosymbiotic AM fungi colonize the inner cortical cells of the roots, where they form branched hyphae called arbuscules that function in nutrient exchange with the plant. To support arbuscule development and subsequent bidirectional nutrient exchange, the root cortical cells undergo substantial transcriptional reprogramming. REDUCED ARBUSCULAR MYCORRHIZA1 (RAM1), previously studied in several dicot plant species, is a major regulator of this cortical cell transcriptional program. Here, we generated ram1 mutants and RAM1 overexpressors in a monocot, Brachypodium distachyon. The AM phenotypes of two ram1 lines revealed that RAM1 is only partly required to enable arbuscule development in B. distachyon Transgenic lines constitutively overexpressing BdRAM1 showed constitutive expression of AM-inducible genes even in the shoots. Following inoculation with AM fungi, BdRAM1-overexpressing plants showed higher arbuscule densities relative to controls, indicating the potential to manipulate the relative proportion of symbiotic interfaces via modulation of RAM1 However, the overexpressors also show altered expression of hormone biosynthesis genes and aberrant growth patterns, including stunted bushy shoots and poor seed set. While these phenotypes possibly provide additional clues about the scope of influence of BdRAM1, they also indicate that directed approaches to increase the density of symbiotic interfaces will require a more focused, potentially cell type specific manipulation of transcription factor gene expression.
更多
查看译文
关键词
arbuscule density
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要