Probing spin-dependent dark matter interactions with ^6 Li

The European Physical Journal C(2022)

Cited 2|Views6
No score
Abstract
CRESST is one of the most prominent direct detection experiments for dark matter particles with sub-GeV/c ^2 mass. One of the advantages of the CRESST experiment is the possibility to include a large variety of nuclides in the target material used to probe dark matter interactions. In this work, we discuss in particular the interactions of dark matter particles with protons and neutrons of ^6 Li. This is now possible thanks to new calculations on nuclear matrix elements of this specific isotope of Li. To show the potential of using this particular nuclide for probing dark matter interactions, we used the data collected previously by a CRESST prototype based on LiAlO _2 and operated in an above ground test-facility at Max-Planck-Institut für Physik in Munich, Germany. In particular, the inclusion of ^6 Li in the limit calculation drastically improves the result obtained for spin-dependent interactions with neutrons in the whole mass range. The improvement is significant, greater than two order of magnitude for dark matter masses below 1 GeV/c ^2 , compared to the limit previously published with the same data.
More
Translated text
Key words
dark matter,$$^6$$li,spin-dependent
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined