Chrome Extension
WeChat Mini Program
Use on ChatGLM

3D cylindrical BGK model of electron phase-space holes with finite velocity and polarization drift

PHYSICS OF PLASMAS(2024)

Cited 0|Views7
No score
Abstract
Nonlinear kinetic structures, called electron phase-space holes (EHs), are regularly observed in space and experimental magnetized plasmas. The existence of EHs is conditioned and varies according to the ambient magnetic field and the parameters of the electron beam(s) that may generate them. The objective of this paper is to extend the 3D Bernstein-Greene-Kruskal model with cylindrical geometry developed by L.-J. Chen et al. ["Bernstein-Greene-Kruskal solitary waves in three-dimensional magnetized plasma," Phys. Rev. E 69, 055401 (2004)] and L.-J. Chen et al., ["On the width-amplitude inequality of electron phase space holes," J. Geophys. Res. 110, A09211 (2005)] to include simultaneously finite effects due to (i) the strength of the ambient magnetic field B-0, by modifying the Poisson equation with a term derived from the electron polarization current, and (ii) the drift velocity u(e) of the background plasma electrons with respect to the EH, by considering velocity-shifted Maxwellian distributions for the boundary conditions. This allows us to more realistically determine the distributions of trapped and passing particles forming the EHs, as well as the width-amplitude relationships for their existence.
More
Translated text
Key words
3d bgk model,electron,polarization,phase-space
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined